Determining the Effective Density and Stabilizer Layer Thickness of Sterically Stabilized Nanoparticles
نویسندگان
چکیده
A series of model sterically stabilized diblock copolymer nanoparticles has been designed to aid the development of analytical protocols in order to determine two key parameters: the effective particle density and the steric stabilizer layer thickness. The former parameter is essential for high resolution particle size analysis based on analytical (ultra)centrifugation techniques (e.g., disk centrifuge photosedimentometry, DCP), whereas the latter parameter is of fundamental importance in determining the effectiveness of steric stabilization as a colloid stability mechanism. The diblock copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA) using RAFT aqueous emulsion polymerization: this approach affords relatively narrow particle size distributions and enables the mean particle diameter and the stabilizer layer thickness to be adjusted independently via systematic variation of the mean degree of polymerization of the hydrophobic and hydrophilic blocks, respectively. The hydrophobic core-forming block was poly(2,2,2-trifluoroethyl methacrylate) [PTFEMA], which was selected for its relatively high density. The hydrophilic stabilizer block was poly(glycerol monomethacrylate) [PGMA], which is a well-known non-ionic polymer that remains water-soluble over a wide range of temperatures. Four series of PGMA x -PTFEMA y nanoparticles were prepared (x = 28, 43, 63, and 98, y = 100-1400) and characterized via transmission electron microscopy (TEM), dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS). It was found that the degree of polymerization of both the PGMA stabilizer and core-forming PTFEMA had a strong influence on the mean particle diameter, which ranged from 20 to 250 nm. Furthermore, SAXS was used to determine radii of gyration of 1.46 to 2.69 nm for the solvated PGMA stabilizer blocks. Thus, the mean effective density of these sterically stabilized particles was calculated and determined to lie between 1.19 g cm-3 for the smaller particles and 1.41 g cm-3 for the larger particles; these values are significantly lower than the solid-state density of PTFEMA (1.47 g cm-3). Since analytical centrifugation requires the density difference between the particles and the aqueous phase, determining the effective particle density is clearly vital for obtaining reliable particle size distributions. Furthermore, selected DCP data were recalculated by taking into account the inherent density distribution superimposed on the particle size distribution. Consequently, the true particle size distributions were found to be somewhat narrower than those calculated using an erroneous single density value, with smaller particles being particularly sensitive to this artifact.
منابع مشابه
Adsorption of Small Cationic Nanoparticles onto Large Anionic Particles from Aqueous Solution: A Model System for Understanding Pigment Dispersion and the Problem of Effective Particle Density
The present study focuses on the use of copolymer nanoparticles as a dispersant for a model pigment (silica). Reversible addition-fragmentation chain transfer (RAFT) alcoholic dispersion polymerization was used to synthesize sterically stabilized diblock copolymer nanoparticles. The steric stabilizer block was poly(2-(dimethylamino)ethyl methacrylate) (PDMA) and the core-forming block was poly(...
متن کاملExperimental investigations of behaviour of rhamnolipid biosurfactants as a green stabilizer for the biological synthesis of gold nanoparticles
Use of biosurfactants as a green stabilizer for the biological synthesis of gold nanoparticles (AuNPs) is now emerging as nontoxic and environmentally acceptable "green chemistry" procedures. Stability of AuNPs at different pHs is very important because our body has different pHs. This paper addresses this issue. In this work, first P. aeruginosa PTCC 13401 was used to produce rhamnolipid biosu...
متن کاملExperimental Investigation of Porosity, Installation Angle, Thickness and Second Layer of Permeable Obstacles on Density Current
This study explored the effect of porosity and installation angle, thickness (dimension) and second layer of permeable obstacles on density current control and trapping in the laboratory. For this purpose, an insoluble suspended polymer and two types of groove and cavity obstacles made from plexiglass sheets were selected. The experiments were conducted with two different concentrations, five d...
متن کاملBiosynthesis of highly stabilized silver nanoparticles by Rhizopus stolonifer and their Anti-fungal efficacy
Highly stabilized monodispersed silver nanoparticles (AgNPs) were synthesized by Rhizopus stolonifer and the antifungal efficacy of silver nanoparticles (AgNPs) against Candida sp. were studied. Characterization of biosynthesized nanosilver was made by TEM-EDS and AFM. Minimum Inhibitory Concentration (MIC) of biosynthesized AgNPs, Amphotericin B, and Fluconazole have been studied on pathogenic...
متن کاملAmido-Amino Clay Stabilized Copper Nanoparticles: Antimicrobial Activity and Catalytic Efficacy for Aromatic Amination
Amido-amino functionalized halloysite stabilized copper nanoparticles (aah-CuNPs) were synthesized through one-pot protocol by a wet chemical method using hydrazine as reducing agent. The nanocomposite formed was stable in dry ethanol. The composition and binding nature of the nanocomposite were studied using FT-IR, DRS-UV, EDAX and powder XRD techniques. The morphological features of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 49 شماره
صفحات -
تاریخ انتشار 2016